
A note on ring integrals and the Fermi function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1970 J. Phys. A: Gen. Phys. 3 342

(http://iopscience.iop.org/0022-3689/3/4/004)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/3/4
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

A note on ring integrals and the Fermi function 

G. J. PAPADOPOULOS and il. V. JOSES 
Department of Applied Mathematics, Unirersity of Leeds, Leeds LS2 9JT, 
England 
MS. fpeceived 24th Februavy 1970 

Abstract. A method which proceeds in a natural fashion via the symmetry 
properties of the wave functions of a many-body fermion (boson) system of 
independent identical particles, is employed for the derivation of the Fermi 
(Bose) function. The  analysis makes use of the grand partition function expres- 
sed in terms of ring integrals. Spin considerations are included in the case of 
electrons in a constant uniform magnetic field. 

1. Introduction and derivation of the Fermi function 
I t  is well known that in dealing with a many-body system of identical particles, 

whose dynamical development is determined by the Schrodinger equation, the 
admissible wave functions are antisymmetric if the system is composed of fermions 
and symmetric for boson systems. 

For the study of the equilibrium thermodynamic properties of an N-body system, 
one requires the partition function of the system: 

exP( - PHN) zT(T) = Tr(T) 
N 

= 12 k X l ,  *’., x,) exp(-PHN)$nT(X1, a . ’ ,  X N )  n dx, (1) 
{ n }  5 =1 

where the trace operation is taken against a complete set of antisymmetric(-) (sym- 
metric(+ )) wave functions of the N-particle Hamiltonian HN, in the case of fermions 
(bosons). 

In  dealing with independent particles (weakly interacting) the N-particle partition 
function for fermions can be written in terms of the single-particle Green function of 
the Bloch equation 

(4 

I I G(x,P 1x10) * . . G(XNP 1 X N O )  I 

(see Montroll and Ward 1958). The  case of bosons is obtained by replacing the 
determinant by a permanent. Ter  Haar (1966) gives an interesting derivation of (3). 

The  direct evaluation of the partition function is in general extremely difficult, 
and one proceeds via the grand partition function: 

cc 

for which an asymptotic evaluation of the partition function for large N is feasible. 
The (+) sign is associated with the permanent form of (3). Now, Fredholm’s theory 
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of integral equations, in relation to iterated kernels, provides the following expression 
for the grand partition function (4) : 

where Al  stands for the Zth ring integral 

A, = 1, ... j G(x,Blx,O)G(x,plx,O) ... G(x,pIx,O) dx,. (6) 
1 =1 

Expression (5) is the cumulant version of (4). Outline of its derivation may be found 
in Kubo’s book (1965). 

For statistical evaluations it is more convenient to deal with the free energy of the 
system, rather than with the partition function. This is obtained, as is well known, 
from the grand partition function as 

F(’) = ixTNlnx-KTlnE(7)  

where x, the fugacity of the system, determined by the number 
system, can be expressed in terms of the chemical potential 
We then write (7) as 

A1 33 

F(?)  = N P - K T  2 ( i)l+1exp(L/3,u)T. 

Before we proceed any further, we shall show that the Zth 
1 = 1  

expressed in terms of the single-particle partition function, 

as 

(7 )  
of particles N in the 
p, as: x = exp(Pp). 

ring integral can be 

Relation (9) can be derived very simply by utilizing the eigenfunction expansion of the 
single-particle Green function 

G(x/Ilx’O) = 2 @,(x)@,*(x’) exp( -PEn). ( 1 0) 
I n )  

Repeatedly substituting (10) into (6), for the ring integral A,, and recalling the 
orthogonality of the eigenfunctions On, we obtain 

A,  = 2 exp( - &En)  = Z,(l/I). 
I n) 

Having established (9), let us express the ring integrals as a Laplace transform of a 
function of energy, g(e), as 

A, = Z,(Z/I) = drg(E) exp( - Ipe) .  (11) 1: 
Since (11) is valid for arbitrary ,B > 0, we can also write 
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Therefore ( l la)  tells us that the functiong(E), which generates A,  in (11) as a Laplace 
transform, is just the single-particle density of states (see Sondheimer and Wilson 
1951). Introducing (11) into (7a) for the free energy, and summing over the resulting 
series we obtain 

3”’) = -‘Vp TKT drg(E) ln[l =exp(-P(~-p))] .  (12) i,’ 
This is the form of the free energy in Fermi-Dirac (Bose-Einstein) statistics. 

The Fermi (Bose) function can now be obtained from 

Derivation of (12), based on the symmetry properties of the wave functions of a 
many-body system, has been done in the particular case of free particles (no external 
interaction), by direct evaluation of the ring integral (6). This may be found in 
Montroll and Ward (1958). However, such an evaluation of A L  involves multiple 
integration and is by no means an easy task even in the case without external inter- 
action. Our approach evades all these difficulties and is quite general. The  central 
role in our derivation is played by the Laplace transform representation of the ring 
integrals Al ,  given in (11). 

So far we have silently restricted the discussion to the case of spinless particles. 
We think that we can best show how to take account of the spin in the grand partition 
scheme by treating a particular case: that of electrons in a constant uniform magnetic 
field B. We shall ignore the spin interaction with possible electric fields. 

The  accommodation of spin in the above formalism is effected via the following 
modifications: The  Green functions G( x’O) employed in (3) and given in eigen- 
function expansion form in (10) will take the form : 

G(x~Plx’0’0) = 2 @,*(x’, U’) exp{-P(H,+ W)}@’.(x, U) (10‘) 
{ n )  

where W is the spin part of the Hamiltonian and the variable U (values - 1, + 1) 
stands for the spin variable. We have 

j @,,*(x, u ’ )@~(x ,  G) dx = ( lO /a )  

and 
(HI+ W)@,(x ,  0) = (E,+ aPBB)@n(x, U) (10‘b) 

where pB is the Bohr magneton and E ,  is the eigenvalue of the Hamiltonian operator 
H I  associated with the eigenfunction @,( x), to which the wave functions @,( X, 0) 
coalesce if the spin magnetic field interaction is removed. 

With this modification the form (5) of the grand partition function is preserved and 
the ring integrals (6) now take the form: 

Taking into account (lo’, 10’a, lO’b), we find that (6’) yields 

A, = b P (  - @PBB) f e x P ( h 3 B ) l ~ l ( @ )  (9’) 
where Zl(,B) is the single-particle partition function for ‘spinless electrons’. 
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The single-particle partition function for an electron in a magnetic field B is 
given by : 

where 

( l 0 ' a )  

may be cited, which shows that the ring integral A ,  in the case where the spin is 
included is again obtained via the rule established earlier on, namely that of replacing 
/3 by Z,8 in the appropriate single-particle partition function. Therefore, formulae (1 1) 
and ( l la)  are still applicable in (12) and (12a) for the derivation of the Fermi function, 
spin inclusive. We may remark that by taking the magnetic field B in (9') equal to 
zero the factor in front of Z,(ZP) becomes 2, which is the usual factor for electrons to 
account for the two possible spin orientations. 

The  above considerations can be easily generalized to include bosons or fermions 
of any spin. 

In  the case of interacting particles (two-body interactions), the expression (5) 
for the grand partition function still holds, but the symbols A ,  no longer represent ring 
integrals. Their role is taken up by the quantities ( ~ ) l l b ~ ( T ) ,  bL  being the Zth cluster 
integral discussed in Montroll and Ward (1958). However, we do not yet know the 
analytic properties of the quantities Ib,(P). We can only say that if the above formalism 
is to apply equally well to the interacting case it should be possible to write Zb@) as 
a function of the form J(ZP). 
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